Министерство образования Тульской области Государственное профессиональное образовательное учреждение Тульской области «Донской политехнический колледж»

МЕТОДИЧЕСКОЕ ПОСОБИЕ

на тему:

«Расчет и выбор аппаратуры в релейно-контакторной схеме управления электроприводом асинхронного двигателя с короткозамкнутым ротором»

для студентов специальности

13.02.11 «Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям)»

Разработчик:

Филимонов О.В., преподаватель ГПОУ ТО «Донской политехнический колледж».

Рецензент: Офицерова Е.А., заведующий отделением «Машиностроение и энергетика» ГПОУ ТО «Донской политехнический колледж».

Рассмотрено на заседании предметной (цикловой) комиссии дисциплин профессионального цикла отделения «Машиностроение и энергетика»

31.08.2020 г. протокол № 1

Председатель ПЦК: Кирьянова Т.В.

СОДЕРЖАНИЕ

1 ЗАДАНИЕ НА САМОСТОЯТЕЛЬНУЮ РАСЧЕТНУЮ РАБОТУ	4
2 РАСЧЁТ И ВЫБОР АППАРАТОВ ДЛЯ РЕВЕРСИВНОГО ПУСКА АД	5
2.1 Описание схемы реверсивного пуска асинхронного	
короткозамкнутого электродвигателя с реверсом скорости	5
2.2 Определения значений номинального и пускового тока двигателя	6
2.3 Выбор рубильника	7
2.4 Выбор максимальных токовых реле	7
2.5 Выбор магнитного пускателя	8
2.6 Выбор тепловых реле	8
2.7 Выбор предохранителей	9
3 РАСЧЁТ И ВЫБОР АППАРАТОВ ЗАЩИТЫ СИСТЕМЫ ПЧ-АД	10
3.1 Выбор автоматического выключателя	12
3.2 Выбор плавких предохранителей	13
3.3 Спецификация аппаратов защиты системы ПЧ-АД	14
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	15

1. Задание на самостоятельную расчетную работу

- 1. Произвести расчет и выбор аппаратуры в релейно-контакторной схеме управления электроприводом асинхронного двигателя с короткозамкнутым ротором (рисунок 2.1) в соответствии с техническими данными двигателя. Данные двигателя приведены в таблице 1.1.
- 2. Произвести расчёт и выбор аппаратуры для защиты системы ПЧ-АД (асинхронный двигатель выбирается в соответствии с первой частью задания). Принципиальная схема защиты преобразователя частоты (ПЧ) с автономным инвертором напряжения (АИН) представлена на рисунке 3.1

Таблица 1.1 Характеристики выбранного двигателя

Номер варианта	Тип	Мощность, кВт	Скольжение s,%	КПД, %	cosp	Ммакс/Мном	Мпуск/Мном	Іпуск/Іном	
Синхронная скорость вращения 3000 об/мин									
15	4A180S4У3	22	2	90	0.9	2.2	1.4	7	

2. Расчет и выбор аппаратуры релейно-контакторной схемы управления электроприводом АД с короткозамкнутым ротором

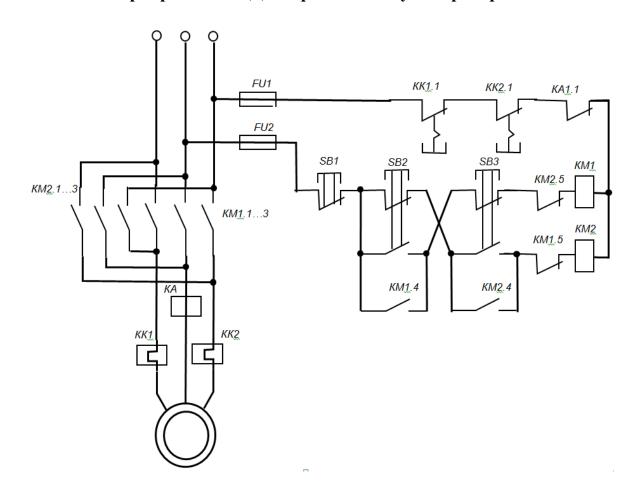


Рисунок 2.1 – Принципиальная схема реверсивного пуска асинхронного короткозамкнутого электродвигателя с реверсом скорости

2.1. Описание схемы реверсивного пуска асинхронного короткозамкнутого электродвигателя с реверсом скорости

На рисунке 2.1 представлена принципиальная схема реверсивного пуска асинхронного короткозамкнутого электродвигателя с реверсом скорости при помощи реверсивного магнитного пускателя.

Для пуска двигателя в нужном направлении, например, вперед, необходимо нажать кнопку SB2. При этом включается группа контактов KM1. 1-3 магнитного пускателя KM1 и присоединяет двигатель к сети. Одновременно замыкающий блок-контакт KM1.4 блокирует кнопку SB2. Для остановки двигателя необходимо нажать кнопку SB1, которая отключит контакты магнитного пускателя, и двигатель будет отсоединена от сети.

Для пуска двигателя в обратном направлении необходимо нажать кнопку SB3, которая включит группу контактов KM2.1-3, магнитного контактора KM2. Две фазы статора двигателя (A и B) поменяются местами, и он начнет вращаться в обратном направлении. Если нажать кнопку SB2 при включенных контактах KM1, то размыкающий контакт этой кнопки отключит контакты KM1.1-4, после чего включатся контакты KM2.1-4. В результате произойдет *торможение противовключением* с последующим реверсом двигателя.

Защита двигателя от больших токов осуществляется с помощью максимальных токового реле *КА* и тепловых реле *КК1* и *КК2*. При срабатывании любого из реле размыкается его контакт (*КА1.1, КК1.1* и *КК2.1*) в цепи контакторов в схеме управления. Последние отключаются, и отсоединяют двигатель от сети.

Для защиты цепи питания двигателя от межфазного замыкания, которое может произойти при одновременном включении контакторов КМ1 и КМ2 в цепи управления предусмотрены блокировки:

- в схеме используются кнопки с двумя контактами замыкающим и размыкающим. Эти контакты включены в разные цепи, обеспечения надежную электрическую блокировку;
- питание катушек контакторов осуществляется через замкнутые контакты соседнего контактора, что не позволяет подать напряжение на катушку, например, *КМ1* при включенной катушке *КМ2*.

Для защиты цепи управления предусмотрены предохранители FU1 и FU2.

2.2. Определения значений номинального и пускового тока двигателя

Прежде чем приступить к непосредственному выбору пускозащитной аппаратуры, необходимо по данным номинальным параметрам двигателя и сети рассчитать номинальный ток двигателя и его пусковой ток.

Номинальный ток двигателя можно определить по следующей формуле:

$$I_{\text{HOM.OB}} = \frac{P_{\text{H}}}{m \cdot U_{\text{HOM.Cemu}} \cdot \eta \cdot \cos \varphi}$$
 (2.1)

где т – число фаз статора.

$$I_{\text{\tiny HO.M.OB}} = \frac{22 \cdot 10^3}{3 \cdot 380 \cdot 0.9 \cdot 0.9} = 23.8(A)$$

По известной кратности пускового тока можно определить его значение:

$$I_{nyc\kappa.\partial B} = 7.5 \cdot I_{HOM.\partial B} \tag{2.2}$$

$$I_{nvc\kappa,\partial\theta} = 7.5 \cdot 23.8 = 178.5(A)$$

После определения значений номинального и пускового тока можно приступить к выбору требуемой аппаратуры.

2.3. Выбор рубильника

Выбор рубильников необходимо, в общем случае, осуществлять, исходя из следующих условий:

- 1. $U_{\text{ном}} \ge U_{\text{ном.сети}}$;
- 2. $I_{\text{ном}} \geq I_{\text{прод.расч}}$;
- 3. $I_{\text{откл.доп}} \ge I_{\text{раб }\tau}$ (в случае, если рубильник имеет дугогасительные камеры или разрывные контакты)

В указанных выше соотношениях представлены следующие обозначения: Uном — номинальное напряжение, на которое рассчитан рубильник; $U_{\text{ном.сети}}$ — номинальное напряжение сети; $I_{\text{ном}}$ — номинальный ток контактов рубильника; $I_{\text{прод.расч}}$ — продолжительно допустимый ток проводника; $I_{\text{откл.доп}}$ — предельно допустимое значение тока отключения; $I_{\text{раб.т}}$ — рабочий ток цепи в момент начала расхождения дугогасительных контактов аппарата. Выбираем по таблице 2.4 (литература [3]) переключатель-разъединитель с центральным рычажным приводом серии ППЦ-32, со следующими номинальными параметрами: $U_{\text{ном}}$ = 380 В, $I_{\text{ном}}$ = 250 А.

2.4. Выбор максимальных токовых реле

1. Выбираем ток уставки реле в зависимости от типа двигателя:

Так как в данной схеме используется асинхронный короткозамкнутый двигатель, то ток уставки реле выбираем по следующему выражению:

$$I_{ycm.p} = 1,3 \cdot I_{nyc\kappa.\partial 6}$$
 (2,3)
 $I_{ycm.p} = 1,3 \cdot 178.5 = 232.05(A)$

2. Выбираем номинальный ток реле

Исходя из условий выбора максимальных токовых реле по номинальному току $I_{\text{ном.р.}}$, нужно выбирать такие реле, чтобы выполнялось условие:

$$I_{\text{hom,p}} \ge I_{\text{hom,db}} = 23.8A$$
 (2.4)

Указанным двум условия удовлетворяет реле серии РЭО-401 со следующими номинальными параметрами: $I_{\text{ном}}$ =63A, $I_{\text{сраб.p}}$ =(82 ÷252)A.

2.5. Выбор магнитного пускателя

Для пуска, реверса и аварийного отключения в схеме электропривода используется реверсивный магнитный пускатель. Для выбора требуемого магнитного пускателя обратимся к пункту 2.2.3 методических указаний. Параметры выбираемых магнитных пускателей должны удовлетворять следующим условиям:

$$U_{\text{ном}} \ge U_{\text{ном.сети}} = 380 \text{B}$$
 $I_{\text{ном}} \ge I_{\text{ном.дв}} = 23,8 \text{A}$
 $I_{\text{пред}} \ge I_{\text{пуск.дв}} = 178,5 \text{A}$
(2.5)

Указанным условиям удовлетворяет магнитный пускатель типа ПМЕ-200 со следующими номинальными параметрами:

$$U_{\text{HOM}} = 380 \text{ B};$$

 $I_{\text{HOM}} = 25 \text{ A};$

 $I_{\text{пред}} = 280 \text{ A};$

пусковая мощность, потребляемая обмоткой, $P_{\rm B} = 160~{\rm BA}$; номинальная мощность обмотки $P_{\rm p} = 8~{\rm BA}$.

2.6. Выбор тепловых реле

При выборе теплового реле будем придерживаться порядка, указанного в пункте 2.2.4 настоящих методических указаний:

1. Выбираем предварительное значение номинального тока нагревателя $I_{\text{ном.нагр}}$ номинального тока реле $I_{\text{ном.р}}$:

$$I_{\text{hom.p}} \ge I_{\text{hom.harp}} = 23.8A$$
 (2.6)

В соответствии с этим значением предварительно выбираем тепловое реле серии ТРН, для которого значение коэффициента $\delta = 2\%$.

2. Приводим $I_{\text{ном.нагр}}$ к действительной температуре окружающей среды, т.е. к $t_{\text{окр}}$ (считаем, что $t_{\text{окр}} = +75^{\circ}\text{C}$):

$$I_{\text{hom.happ}} = I_{\text{hom.happ}} \cdot \left(1 - \frac{\delta}{100} \cdot \frac{t_{\text{okp}} - t_{\text{okp.h}}}{10} \right)$$

$$I_{\text{hom.happ}} = 23.8 \cdot \left(1 - \frac{2}{100} \cdot \frac{75 - 40}{10} \right) = 22.134(A)$$
(2.7)

3. Выбираем номинальное значение тока уставки $I_{\text{ном.уст}}$

Так как двигатель работает при температуре, отличной от номинальной, то ток уставки выбирается, исходя из следующего выражения:

$$I_{\text{HOM.ycm}} = \frac{I_{\text{HOM.}\partial 6}}{1 - \frac{\delta}{100} \cdot \frac{t_{o\kappa p} - t_{o\kappa p.H}}{10}}$$

$$I_{\text{HOM.ycm}} = \frac{23.8}{1 - \frac{2}{100} \cdot \frac{75 - 40}{10}} = 25.585(A)$$
(2.8)

4. Окончательно выбираем номинальный ток нагревателя $I_{\text{ном.нагр}}$:

$$17,7A < I_{\text{HOM.Harp}} < 26,56A$$

Таким образом, выбираем тепловое реле серии TPH-25 со следующими номинальными параметрами:

$$I_{\rm ном.p}$$
= 25 A, диапазон изменения тока уставки $I_{\rm ycr}$ = (7,5 ÷13) A, максимальный ток продолжительного режима при $t_{\rm okp}$ = 40° , $I_{\rm макс40^\circ}$ = 30 A.

2.7. Выбор предохранителей

В данной схеме электропривода переменного тока предохранители установлены для защиты цепи управления. Выбирая предохранители для защиты цепи управления, будем ориентироваться на значения пусковой мощности, потребляемой обмоткой магнитного пускателя, и ее номинальной мощности в режиме удержания. При этом следует отметить, что в каждый момент времени (пуск, торможение, реверс) работает только одна контактная группа. При защите электродвигателя с частыми пусками или большой длительностью пускового периода (электродвигатели кранов, центрифуг, дробилок – время пуска более 5 с.)

$$I_{\text{HOM.B}} \ge I_{\text{HYCK}}/(1,6\div2,0)$$

 $I_{\text{HOM.B}} = 178,5/2 = 89,25 \text{A}$

Таким образом, выбираем слаботочные предохранители на номинальное напряжение 600 В серии ПР-2-100, рассчитанные на номинальный ток $I_{\text{ном}} = 100 \text{ A}$.

Таким образом, был произведен расчет и выбор всех необходимых, подходящих по условиям работы, аппаратов для пуска, реверса и защиты асинхронного двигателя с короткозамкнутым ротором.

3. Расчет и выбор аппаратов защиты системы ПЧ-АД

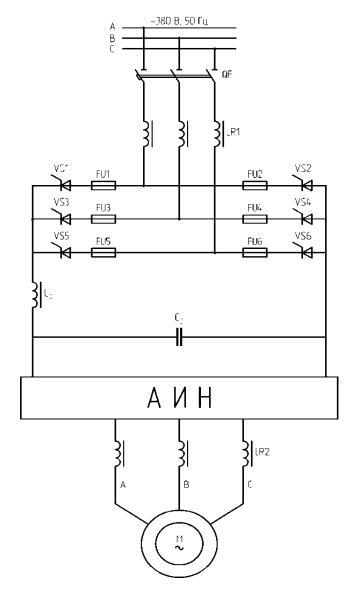


Рисунок 3.1- Принципиальная схема системы ПЧ-АД

В соответствии с рисунком 3.1 можно сказать, что защита преобразователя частоты осуществляется всего двумя видами аппаратов: быстродействующими предохранителями FU и автоматическим выключателем QF.

Основная трудность, в данном случае, заключается в том, преобразователе частоты имеют место как постоянные, так и переменные ток и напряжение. Например, автоматический выключатель QF должен выбираться по действующему значению основной гармоники тока. В тоже время, быстродействующие тиристоров предохранители ДЛЯ защиты силовых выбираются исходя из номинального значения выпрямленного тока. Поэтому целесообразно, предварительно вычислить указанные величины. Можно рекомендовать следующий порядок вычислений:

1 Индуктивное сопротивление асинхронного двигателя:

$$X_{k}^{*} = \frac{1}{I} \cdot \sqrt{1 - (\cos \varphi)^{2}}$$

$$X_{k}^{*} = \frac{1}{23.8} \cdot \sqrt{1 - 0.9^{2}} = 0.018$$
(3.1)

2 Действующее значение полного тока при номинальной нагрузке:

$$I^* = \sqrt{1 + \left(\frac{0,046}{X_k^*}\right)^2} \tag{3.2}$$

$$I^* = \sqrt{1 + \left(\frac{0.046}{0.018}\right)^2} = 2.744$$

3 Номинальная допустимо-длительная мощность:

$$S_{H} = \sqrt{3} \cdot U_{\text{HOM.cemu}} \cdot I_{\text{HOM.OB}} \cdot I^{*}$$

$$S_{H} = \sqrt{3} \cdot 380 \cdot 23.8 \cdot 2.744 = 42983(BA)$$
(3.3)

4 Выбираем преобразователь частоты:

Выбор преобразователя частоты осуществляется исходя из следующих условий:

-
$$S_{\text{н.пч}} \ge K_3 \cdot S_{\text{н}} = 1,25 \cdot 42983 = 53,7 \text{ кВА};$$
- $U_{\text{н.пч}} \ge U_{\text{ном.сети}} = 380\text{B};$
- $I_{\text{н.пч}} \ge I_{\text{пуск.дв}} / \lambda_{\text{пч}} = 178,5 / 2 = 89,25\text{A};$
- $I_{\text{макс.пч}} \ge I_{\text{пуск.дв}} = 178,5\text{A};$

Исходя из перечисленных условий и каталожных данных, выбираем преобразователь частоты типа ТРИОЛ АТ04-55 со следующими параметрами:

$$S_{\text{H.\Pi Y}} = 72 \text{kBA};$$

 $I_{\text{H.\Pi Y}} = 110 \text{A};$
 $I_{\text{MAKC.\Pi Y}} = 132 \text{A};$
 $U_{\text{H.\Pi Y}} = 380 \text{B};$
 $\eta_{\text{\Pi Y}} = 0,885;$

 $P_{\text{ном.дв}} = 22 \text{кBт}.$

5. Активная мощность на выходе инвертора:

$$P_{BX.H} = P_{dH} = \frac{S_H \cdot \cos \varphi}{\eta_{\Pi^4}}$$

$$P_{BX.H} = \frac{4,3 \cdot 0,9}{0.885} = 4,373(\kappa Bm)$$
(3.4)

6. Номинальное напряжение в звене постоянного тока:

$$U_{dH} = \frac{\sqrt{2} \cdot U_{\phi H} \cdot \pi}{2} = \frac{\sqrt{2} \cdot U_{HOM.CETH} \cdot \pi}{2 \cdot \sqrt{3}}$$

$$U_{dH} = \frac{\sqrt{2} \cdot 380 \cdot 3,14}{2 \cdot \sqrt{3}} = 487,34(B)$$
(3.5)

7. Номинальный выпрямленный ток:

$$I_{dH} = \frac{P_{dH}}{U_{dH}}$$

$$I_{dH} = \frac{4,373 \cdot 10^3}{487,34} = 8,973(A)$$
(3.6)

8. Действующее значение первой гармоники тока:

$$I_{1\pi} = \frac{\sqrt{2}}{\sqrt{3}} \cdot I_{dH}$$

$$I_{1\pi} = \frac{\sqrt{2}}{\sqrt{3}} \cdot 8,973 = 7,326(A)$$
(3.7)

Таким образом, был произведен предварительный расчет номинального значения выпрямленного тока и действующего значения первой основной гармоники тока. Кроме того был выбран преобразователь частоты, технические параметры которого необходимо будет учесть при дальнейшем выборе автоматического выключателя.

3.1 Выбор автоматического выключателя

Для защиты преобразователя частоты выбираем автоматический выключатель серии A3700 с тепловым и электромагнитным расцепителями. Требуемый автоматический выключатель должен удовлетворять следующим условиям:

- Номинальное напряжение $U_{\text{нвыкл}} \ge U_{\text{нсети}} = 380 \text{ B};$
- Номинальный ток выключателя $I_{\text{нвыкл}} \ge I_{1\pi} = 7,326 \text{ A}$
- Уставка по току срабатывания теплового расцепителя

$$I_{\rm T} \ge 1,25I_{\rm 1\pi} = 1,25*7,326=9,16 \text{ A}$$

- Уставка по току срабатывания электромагнитного расцепителя

$$I_{\text{3M}} \ge 1.2 I_{\text{Makc.fig}} = 1.2*132 = 158.4 \text{ A}$$

Указанным условиям удовлетворяет автоматический выключатель типа А3712Б со следующими номинальными параметрами:

$$U_{\text{H.BЫКЛ}} = 380 \text{B},$$
 $I_{\text{H.BЫКЛ}} = 160 \text{A},$
 $I_{\text{T}} = 18 \text{A},$
 $I_{\text{2M}} = 160 \text{A}$

3.2 Выбор плавких предохранителей

Из рисунка 3.1 видно, что плавкие предохранители использованы для защиты силовых полупроводниковых вентилей — тиристоров. Поэтому выбираем быстродействующие предохранители серии ПП57. Для определения номинального тока плавкой вставки воспользуемся выражением, приведенным в пункте 2.5:

$$I_{HOM.B} = K_{3A\Pi} \cdot \frac{\lambda_{\Pi^{q}} \cdot I_{dH}}{\sqrt{3} \cdot n}$$

$$I_{HOM.B} = 1, 2 \cdot \frac{2 \cdot 8,973}{\sqrt{3} \cdot 1} = 10,36(A)$$
(3.8)

Кроме того, номинальное напряжение выбираемого предохранителя должно быть не менее $380~\mathrm{B}.$

Указанным условиям удовлетворяет плавкий предохранитель ПП57-25 со следующими номинальными параметрами: $I_{\text{ном.п.в}} = 20 \text{ A}$,

номинальный ток предохранителя $I_{\text{номп}} = 50 \text{ A},$ $U_{\text{ном}} = 380 \text{ B}.$

3.3. Спецификация аппаратов защиты системы ПЧ-АД

№ п/п	Обозн. на схеме	Наименование	Кол.	Примечание
1	QF	Автоматический выключатель А3712Б	1	$U_{\rm H} = 380 {\rm B}$ $I_{\rm Hpacu} = 160 {\rm A}$
2	КМ	Магнитный пускатель ПМЕ – 200	1	$U_{\text{HOM}} = 380 \text{ B};$ $I_{\text{HOM}} = 25 \text{A};$ $I_{\text{пред}} = 280 \text{ A}$
3	M	Асинхронный двигатель 4A180S4У3	1	P_{H} =22 кВт n_{H} =3000 об/мин
4	КК	Реле тепловое ТРН-25	1	$I_{\text{yct}} = (7,5 \div 13)A$
5	FU	Предохранитель ПР-2-100	2	<i>I</i> _{пл.вст.} =100A
6	FU	Предохранитель ПР-2-100	6	I _{пл.вст.} =100A
7	QS	Рубильник ППЦ – 32	1	I _H =250A
8		Преобразователь частоты ТРИОЛ AT04-55	1	$S_{\text{H.\Pi Y}} = 72 \text{kBA},$ $I_{\text{MAKC.\Pi Y}} = 132 \text{A},$ $I_{\text{H.\Pi Y}} = 110 \text{A}$
9	КА	Реле максимального тока РЭО – 401	1	I _{ycr} =63A

Список используемых источников

- 1. Чунихин А.А., "Электрические аппараты", Москва, Энергоатомиздат, 1988г.;
- 2. Сыромятников В.Я., Фомин Н.В., Сыромятникова Т.Н., "Электрические и электронные аппараты", Магнитогорск, 2006г.;
- 3. Лукин А. Н., "Шаг за шагом", Магнитогорск, 2006.